Acta Cryst. (1996). A52, 133-142

133

On Integrating Direct Methods and Isomorphous Replacement Techniques. I.
A Distribution Function for Quartet Invariants

CARMELO GIACOVAZZO®* AND DRITAN SILIQI®

“Dipartimento Geomineralogico, Universita di Bari, Campus Universitario, Via Orabona 4, 70125 Bari, Italy, and
bLaboratory of X-ray Diffraction, Department of Inorganic Chemistry, Faculty of Natural Sciences, Tirana
University, Tirana, Albania. E-mail: giacovazzo@area.ba.cnr.it

(Received 6 April 1995; accepted 30 August 1995)

Abstract

For two isomorphous structures, the joint probability
distribution function of seven pairs of structure factors
has been derived. The vectorial indices of the reflexions
are the basis and the cross vectors of a quartet invariant.
The atomic positions are assumed to be the primitive
random variables. The characteristic function of the
distribution is expanded in a Gram—Charlier series: the
distribution of the structure factors is first obtained by a
Fourier transform operation and then modified into the
exponential form.

1. Notation

The notation is basically the same as that used in the
paper by Giacovazzo, Cascarano & Zheng (1988) (GCZ
from now on). Some notation changes and new
symbols are, however, necessary: they are defined in the
text.

2. Introduction

The integration of direct methods with isomorphous
replacement techniques was initiated by Hauptman
(1982). The joint probability distribution of the triplet
invariant was derived when one pair of isomorphous
diffraction data is available. In that probabilistic
approach, the primitive random variable is the ordered
triple (h, Kk, 1) of reciprocal vectors, which is assumed to
be uniformly distributed over the subset of vectors
satisfying the condition

h+k+1=0. 1)

Then, the structure factors of the native and the
isomorphous derivative are functions of the primitive
random variables h, Kk, I, so that they are themselves
random variables.

In Hauptman notation, the normalized structure factors
of the native and of the derivatives are

N
E, = Enlexplipn) = (1/0) 3 f; exp 2,
l:
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and
. ]/2 N .
Gy, = |Gyl exp(iv) = (1/eg) )Zgj exp 2nihr;,
J=1
respectively, where
N
U = Zl .fjmg;'
j:

The main points of the Hauptman paper are:
(a) the joint probability distribution

P(&n: Yn» 1E], 1G] )

was found, from which the conditional distribution

P($y — Yn|IEw], 1GWl)

was derived;
(b) the joint probability distribution function

P(¢1, 82, b3 V1u ¥, V3, R Ry, RS, 51,55, 55) - (3)

was derived, where ¢, @,, ¢3, ¥, ¥, ¥; stand for ¢,
¢ka ¢Iv 1/fh’ wka ‘#n TeSPeCti"el)’» and Rh R2’ R3’ Sl? SZ’ S3
represent (Ey|, [Ey, |E], [Gyl, |Gl |Gyl

The first application of the method to error-free data
was successful (Hauptman, Potter & Weeks, 1982). The
advantage of the method was clearly outlined by Fortier,
Weeks & Hauptman (1984): the accuracy of the
distribution depends on the scattering difference between
the native protein and the derivative.

The Hauptman approach has been revisited by
Giacovazzo, Cascarano & Zheng (1988). The main
points of this paper may be described as:

(a) It was shown that the joint probability distributions
(2) and (3) can also be obtained by considering the
reciprocal vectors as fixed and the atomic positions as the
primitive random variables;

(b) Some inadequacies of the Hauptman approach
were corrected. In particular, the parameter

_ 172

o = ay; /(2ye,)
was considered a resolution-independent parameter; in
Hauptman’s paper, its value was calculated via zero-
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Table 1. Differences in notation between GCZ and this

paper
GCZ paper This paper
V123 Y123
V26 V23
Vi3s Y3z =N
Y156 Nz
Va3a Ya3i = Vi3
Yaas V3iz = Vi3
Yo Y2i3 = Vi3
Yass Yiz3
0 Bz
By Biz
B B3
Bis B2
Ba 123
Bn Bix
B3 Biz
B Biz

angle scattering factors of f and g. Thus, in (3), no
difference is made between a,, @, and ¢ in spite of the
fact that h, k and I can have quite different resolutions.
The final formula was

P(¢,, ¢, &3, Y1, ¥, ¥3, R, Ry, R, 5,,8,,85)
3
= I:Il(l/ﬂz)[R,S,/(l —(x%)] exp —{[1/(1 — alz)]

X [RY + S} — 2BuR;S; cos(¥, — )]}

x exp[2B;23R | R,R; cos(¢p, + &, + ¢5)

+ 281538, RoR; cos(¥y + ¢, + 5)

+ 2B,33R\S2R; cos(¢; + ¥, + ¢3)

+ 2B13R R, 85 cos(¢; + ¢, + 13)

+28,33R, 8,53 cos(¢, + ¥, + ¥3)

+ 281381 R,S5 cos(¥y + ¢, + ¥3)

+ 2B1335,5,R; cos(¥, + ¥, + 5)

+ 21335555 cos(¥y + ¥, + ¥3)). 4)
The reader will notice that we have used a notation
slightly different from that employed in GCZ. The
correspondence is shown in Table 1.

(c) A formula was derived that holds when derivatives

are obtained by addition of heavy atoms. It was shown
that the triplet phase

D =¢,+ o+

is distributed according to the von Mises function
P(®PR,, S;,i=1,2,3) = [2nl,(A)] " exp(A cos &),
where
A = 2[03/03"1pR\RoR; + 2[03/03 )y A, A, 4,

where
A=(E,— El’,),

E,=F,/5y’, E;=F,/5/.

INTEGRATING DIRECT METHODS AND ISOMORPHOUS REPLACEMENT. I

E, and E;, are the structure factors of the protein and the
derivative, respectively, normalized with respect to the
heavy-atom structure.

The Hauptman mathematical approach is based on the
preliminary calculation of the characteristic function of
the distribution (4). Such a function was assumed to have
exponential form. The question now is: if the character-
istic function is expanded in a Gram—Charlier series, is
some information lost during the subsequent calcula-
tions? In particular, can Hauptman’s or GCZ’s distribu-
tion be derived via a characteristic function expanded in a
Gram—Charlier series?

There are several reasons that make this problem
relevant:

(@) The Gram—Charlier expansion of the characteristic
function was used (Giacovazzo, 1975, 1976) for
estimating quartet invariants. The conclusive formula is
different from Hauptman’s formula but has equivalent
accuracy and proved very useful in a large variety of
applications (Altomare, Burla, Cascarano, Giacovazzo &
Guagliardi, 1993).

(b) The use of the Gram—Charlier expansion simplified
the calculations necessary for the derivation of the
quartet formula. Thus, its use could also simplify the
calculations necessary to evaluate quartet invariants
when isomorphous derivative data are available. The
probabilistic theory of quartet invariants when isomor-
phous data are available has not been settled so far. In
order to derive the joint probability distribution of
isomorphous data sets, Kiriakidis, Peschar & Schenk
(1993) have applied a technique that relies on the use of
the so-called single difference between two isomorphous
structure factors as a variable, instead of using the
individual structure factors separately as done by
Hauptman and by GCZ. While this technique succeeded
in reproducing triplet distributions, it did not provide
accurate probability distributions for quartet invariants
(Kiriakidis, 1993). In this paper, we aim at deriving the
joint probability distribution of isomorphous structure
factors defining the quartet phases. In order to do that, we
will first derive the joint probability distribution function

P= P(¢1’¢2’ &3 Y1, ¥y, ¢3,R1,R2,R3,Sl,52,53)

via Gram—Charlier expansion of the characteristic
function and we will show that both Hauptman and
GCZ distributions may be obtained in this way. Since the
method allows remarkable simplifications in the calcula-
tions, we will study by the same technique the more
complex distribution

P(¢h9¢k*¢l’¢m’¢h+k7¢h+l’¢k+l’Rh’Rk*Rl" . ’Sh+l’Sk+l)

in order to derive a formula for the estimation of the
quartet invariants when derivative data are available. In
spite of the simplifications involved by the method, the
calculations are rather extensive. For reader usefulness,
the key formulas are quoted in Appendices A, B and C. In



CARMELO GIACOVAZZO AND DRITAN SILIQI

the text, we will only note the strictly necessary
intermediate results.

3. Triplet estimation via the Gram—Charlier
expansion of the characteristic function

Let us denote by

C(v1, Vo, V3, 1y Koy K35 P15 P25 P35 V15 Va5 V)
the characteristic function of the distribution

P(¢19 ¢2! ¢39 1/’1a ¢29 11[,39 R]s R2, R3v Sly SZs S3)‘

Vi Uiy Pps ¥Vi» fOor i =1,2,3, are the carrying variables
associated with ¢, ¥;, R;, S;, i = 1, 2, 3, respectively.

If the Gram—Charlier expansion of the characteristic
function is used (Giacovazzo, 1980) up to and including
triplet relationships, the joint probability distribution P
may be written in the form
P ~(21)""*2°R,R,R;S,5,S,

o0 21

00 2n
Xf---ff---fp1pzp3}’1}’z}’3
0 00 0

x exp{—i2'[p,R, cos(¢; — v;)

+ 2R, cos(¢, — v5) + p3R3 cos(¢s — v3)

+ 7181 cos(Yy — wy) + 1,8, cos(Yr, — uy)

+ v3S3c08(¥3 — i)l — 3 (07 + 03 + 03
+r+¥+ 1) — oy cos(v; — )

— 030, €08(Vy — [hp) — 013 03¥3 COS(V3 — U3)}
X {1 = 2721y 530, 0,03 €OS(v; + v, + v3)

+ V12301923 €OS(vy + v, + 1h3)

+ V13301 Y203 COS(vy + 1y + V3)

+ V3P Vays cos(vy + py + 13)

+ ¥i3Y10203 COS(1y + v, + v3)

+ ¥i33¥1Y203 COS(1. + g + v3)

+ ¥i23V1P2¥3 €OS(y + v, + 1)

+ 13371 Y2¥3 €0S(iy + 1y + 131}
xdp,...dy,...dv,...du,. 5)

We have used in (5) a notation slightly different from that
used in the GCZ paper. Differences are shown in Table 1.

We first integrate the zero-order term in (5). The result
is (see Appendices A and B)

3
l:[l(l/ﬂz)[RiSi/(l —af)lexp{—1/(1 — )]
X [R:z + Siz — 2a;R;S; cos(¥; — 9},

which coincides with (4) when the triplet contributions
are excluded.

Let us now calculate the contribution to (5) arising
from the first triplet term in (5), that is from
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=272 y,10301 0203 COS(V, + v, + 13).

In accordance with Appendix C, we obtain the
contribution

3
l:[l(l/ﬂz)[RiSi/(l —a})]exp{—[1/(1 — a})]
x [sz +Si2 — 204R;S; cos(¥; — @)1}

5 -1
X 2123 [1:[1(1 - “?)] [R\R,R; cos(¢y + ¢, + ¢3)

— G RyR; cos(Y; + &, + ¢3)

— ay,R,G,R;5 cos(¢; + ¥, + ¢3)

— 3R R,G5 cos(¢, + ¢, + ¥r3)

+ a,0,G,GyR; cos(Yy + ¥, + ¢3)

+ a,03GR,G5 cos(¥r, + ¢, + ¥r3)

+ @,03R,G,G;3 cos(¢; + ¥, + ¥3)

— 0,0,03G,G,G;3 cos(Yy + ¥, + ¥3)) (6)

If the calculation is repeated for all the triplet terms in
(5), one obtains

3
P~ _1:[1(1/”2)[1?,-3;/(1 — ap)lexp{~[1/(1 - a})]

x [R? + 87 — 2a,R;S; cos(¥; — ¢)1}

X [1 4+ 2B,3R | RyR; cos(¢; + ¢, + ¢3)

+ 2B13S1R,R; cos(¥, + ¢, + &5)

+ 2B,33R,S,R3 cos(@y + ¥, + ¢5)

+ 2B,5R R,S;5 cos(¢; + &, + ¥3)

+ 28,5R, 8,85 cos(¢, + ¥, + ¥3)

+ 281,351 R, S5 cos(¥, + @, + ¥3)

+ 2B133515,R3 cos(Yry + ¥, + ¢3)

+ 2B1335,5,85 cos(¥y + ¥, + ¥r3)l. (7

The transformation
(1+x)~expx

makes (7) equal to (4).

It is therefore verified that the use of the Gram-
Charlier expansion of the characteristic function pro-
vides, for triplet invariants, the same results derived via
the exponential form of the characteristic function. The
key to the method, the truncated series expansion
expx — (14 x) of the characteristic function and the
back-transformation (1 + x) — expx for the distribution
function, seems to disturb the identification of the
probability distribution minimally. We can therefore
expect that the method may be usefully applied to quartet
invariant distributions.
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4. The characteristic function of the joint probability
distribution function of seven isomorphous pairs of
structure factors

Let

Cpyev s Vs Bps ey 75 Py oo+ P Vs -+ - V1)
be the characteristic function of the distribution
P,=P(py,....0:, ¥, ... ¥, Ry oo R, Sy 00 S),
where

E| =R, exp(i¢,) = Ry, exp(i¢h,),

E; = R, exp(i,) = Ry exp(iy),

E3 = Ry exp(is) = R, exp(i¢y),

E, = R, exp(i¢;) = Ry, exp(i¢),

E5 = Rs exp(i¢s) = R,k €Xp(idhh k)

Eg = Rq exp(i¢hs) = Ry €xp(idhhp),

E; = Ry exp(i¢;) = Ry 1y exp(idy.11),

G, = S, exp(iy) = Sy exp(ivhy,),

G, = S, exp(iy,) = Sy exp(ivy),

G5 = S3exp(iyrs) = S, exp(ivh),

Gy = S, exp(iy) = Sy exp(iY),

Gs = S5 exp(iys) = Spix €XP(i¥hsk)s

G = Sg exp(i¥s) = Sp11 €XP(iVp),

G; = §;exp(iyr;) = Sy €XP(IYy ),
Vi, Wiy P Vi, fori=1,...,7, are the carrying variables

associated with ¢;, ¥, R;, S; for i=1,...,7, respec-
tively, and

h+k+14+m=0.

The characteristic function, expanded in a Gram—
Charlier series, may be written as

o oco2r 2w 14
P,=[...[ ... [THQ/27)RS:p;v;
0 00 0=l
x exp[—3 (0o} + ¥7) — i2/*p;R; cos(; — v))
— i2'%y,S; cos(¥; — ;) — a;p;; cos(v; — )]}
x {1 =27 2ily1p50, 0,05 cOS(v; + v, — v5) + O
+ V345030405 €O8(v3 + vy + v5) + O
+ V13601306 COS(V; + V3 — v6) + O
+ V246020406 €OS(V; + V4 + v6) + O
+ V147010407 €OS(vy + vy + v;) + O
+ V237020307 €08(V; + v3 — v;) + O
~ §¥isP 0303 cos’ (v + v, — v5) + O
— § VaasP3 0305 cos?(v3 4 vy +v5) +O
— $ V60103 Pg 08> (v 4 v3 — vg) + O

INTEGRATING DIRECT METHODS AND ISOMORPHOUS REPLACEMENT. I

— Vs P304 0§ cos* (v, + vy + v6) + O

~ $ViaP o405 cos* (v + vy 4+ v;) + O

— 3 V030305 Cos* (v, + 13 — 1) + O

+ V12301020304 €OS(V) + vy + V3 + 1) + O

— 3 V12534501 02030405 COS(V) + vy + V3 + 1) + O

— 3 V136V24601 02030405 COS(Vy + vy + V3 + 1) + O

— V17 V2370102030405 €OS(V) 4 vy + v + 1) + O

+.} 8)
The number of terms in the distribution (8) is extremely

large. We have quoted only those that significantly
contribute to the estimation of

=0yt + &+ I

We note the following.

(i) We have used a curved arrow to represent the
‘cyclic terms’ of a prototype term [only the prototypes
are quoted in (8)]. For example:

(@) The complete set of cyclic terms for

Yi2sP10205 cos(v, + v, — v5) (the prototype included)
contains [see the distribution (5)] the eight terms

Y125P1P2P5 COS(V; + vy — v5),
V13501205 €0S(V; + Ky — Vs),
Yias¥1 0205 COS(14y + vy — vs),
Yi2s V1025 COS(ky + vy — Us),

Y125P1P2¥s €OS(v; + v, — W),
V13501 Y2 V5 €08(Vy + Ky — s),
YizsV1Y20s Cos(iy + py — vs),
Yi3sV1 V2 Vs COS(Uy + py — Whs).
In all, the distribution involves 48 different triplet terms
and we quote in (8) only the six prototypes.
(b) The cyclic terms of y,y3,0,0,0304 COS(V; + v, +
v; + v,) (the prototype included) are the 16 terms
V12380120304 €OS(V) + v + v3 + 1),
Y1234P1P203Y4 COS(Vy + vy + vy + ),
Y1233P1P2Y3Ya COS(V + vy + fhs + y), -,
YizsV1V2Va¥a COS(y + Wy + 1s + ). ©)

We have not quoted in (8) quartets like

Y1267P1P2PsP7 COS(V) — Vy — Vg + v7) + O
Y1357P103P507 COS(vy — V3 — Vs +v7) + O
V23560203 P50 COS(V, — V3 — Vs + vg) + O
V1456P1PaPsPs COS(V — vy — V5 — vg) +
Y245710204P507 €OS(V, — vy — Vs — v7) +
Y3467P3P4PsP7 COS(V3 — vy — Vg — v7) + .

It was shown by Giacovazzo (1975, 1976) that their
contribution for the estimation of

S = by + b+ + b
is of order higher than that arising from the quartets (9).
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(c) There are (16 x 4) cyclic terms of the prototype

V12534501 P2P3P403 COS(V| + v, + 13 + 1), which may
be obtained by permuting on p,0,0;0, as in (9) [16
cases] and associating to each of them the permutations
on pi. For example, if we select the first of the 16
permutations in (9), we must consider the following
terms:

V125¥345P1 02030805 COS(V; + vy + 3 + v,),

}’125)’345919293941’52 cos(v; + v, +v3 +vy), (10a)
Y125¥343P1P20304P5Ys COS(Vy + vy + V3 + vy + Vs — Us),
Y125¥34501P2P304P5Ys COS(Vy + vy + V3 + vy — Vs + fs).

In the same way, for the permutation p, 0,03, in (9), we
must consider the terms

Vi2sV3isP102P3Ya05 COS(Vy + vy + v + i),
Vi23¥3i5P10203Ya Y5 COS(v| + vy + 3 + W),
Y125¥38501P2P3YaPsVs COS(Vy + Vy + V3 + phy + Vs — W),
Y125Y3i5P102P3YaPs¥s COS(Vy + vy + V3 + py — Vs + s).

We have not quoted in (8) (see again Giacovazzo, 1975,
1976) terms like

V13623701 P2Pe P05 COS(Vy — Uy — Vg + 1) + )

5 (10b)

Y125V53701P2050703 €OS(Vy — v3 — Vs + v7) + O
since they provide a contribution of a higher order (for
the estimation of @) than that arising from the quartets
(9). In conclusion, the total number of quartet terms in (8)
that will be involved in the next calculations is 16+
3(16 x 4) = 208.

(i) y;; are defined in the GCZ paper; y;,3, and cyclic
parameters are defined as follows:

N
Vi = (X1 2 ) 3 R m)

N
Vi = (21 2 55 50 2 S £(f ), (Dg;(m)

j=1

Y1333

1N
(i)™ > 8(h)g, ()8, (g, (m).

5. The contribution to P, of some prototype terms

There are too many terms in (8) to register the
contribution of each single term. We therefore decided
to calculate the contribution of the prototype terms and
then to derive by a symmetry rule all the other useful
contributions.
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We first integrate the term of order zero in the
Gram—Charlier expansion (8). We have (see Appendices
A and B)

7
Py~ [I](l/ﬂz)[R,-S.-/(l — af)]exp{—{1/(1 — &})]
X IR} + S} — 20;R:S; cos(y; — )]} (11)

The contribution to P, of the prototype quartet term
Y1234P1P203P4 €OS(V) + vy + V3 + 1) is

4
PoTIIL — o1 Y1234Z 2340

i=1

(12)

where

Z1p34 = 16[R\RyR3R, coS(p) + ¢, + &3 + ¢4)
— ;8 RyR3R, cos(Yry + ¢, + 5 + ¢4)
— ayR S,R3R, cos(py + ¥y + 5 + )
— a3R\R,S3R, cos(py + ¢, + Y3 + ¢4)
— &R\ RyR3S,co8(¢) + ¢, + ¢+ ¥a)
+ 0,8 S,R3R, cos(Yy + ¥, + @5 + ¢s)
+ ;058 ,R,S5R, cos(¥, + ¢, + Y5 + By)
+ ;0,8 R,R;S, cos(¥) + ¢, + ¢3 + ¥,)
+ 3R, S,83R, cos(@y + ¥, + Y3 + ¢4)
+ 0,04R,5,53R, cos(¢y + ¥, + Y3 + &)
+ 0304R R, 535, cos(¢y + ¢, + Y3 + Y1)
— 010,038,5,83R, cos(Yr; + ¥, + Y3 + ¢4)
— 000,85, S,R;S, cos(Yr, + ¥, + @5 + ¥)
— 003048 RyS35, cos(ry + ¢, + Y3 + V)
— 0, 030,4R 5,558, cos(¢; + ¥, + Vs + ¥ry)
+ 01 @y030451 5,535, cos(Py + ¥, + Y3 + )l
The contribution to P, of the prototype quartet term
—(3)V125V24591 2030403 COS(V; + v, + V3 + vy)
is
s -1
Py [,H1(1 - 04.'2)} VizsVsasZigaa{[1/(1 — @3)]
x [R: 4 a2S? — 2a5RsSscos(ps — ¥5)] — 1) (13)
The contribution to P, of the prototype quartet term

—(3)V123¥34301 0203045 COS(vy + vy + vy + vy)

is

5 -1
Po[_l:ll(l - ‘1,2)] 1’125}’34521234{[1/(1 - 0‘%)]

x [S2 4+ o2R? — 205RsSs cos(ps — ¥s)] — 1} (14)
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The contribution to P, of the prototype quartet term
_(%)VIZS}/Mgp] P203P4PsVs COS(V; +V, +V3+ v, +vs—LUs)
is
5 - d(1
Py [ H](l - 0‘?)] Y125Y345 (RSSSZ{I&( ) - 58371734
=

— as{[1/(1 — aB)]IRS + @553
— 205RsSs cos(@s — ¥rs)] — 1}21234)’
where
Zﬁgi(l) =16[R,R,R:R, cOs(¢; +¢, +d3 +d4+ Vs —s)
—a;8 R,R;R, cos(Y + ¢+ 3+ ¢4+ Vs —¢s)
—,R 8,R3R, coS(y + ¥, + 3+ s+ Vs —ds)
+. o ay03048, 5,535,
xcos(¥ + ¥+ +¥ +¥s —¢s)]
The contribution to P, of the prototype quartet term

—(3)Y125V34501 02030495 V5 COS(V; +V, +V3+ v, — Vs +1s)
is

(15)

5 -1
P, [ _l:[](l - a.g)] Y125V 345 (RSSSZng(z) - o‘555221234

— as{{1/(1 — 3RS + o555
— 205R S5 cos(ps — ¥s)] — 1121234),
where
Z53 P =16[R,R,R3R, cos(, + b, +3+ s+ 65— ¥s)

—a;81RyR3R, cos(Y +¢,+ @3+ 4+ s —¥rs)
—0,R SRR, COS(@y + ¥, + b3+ Py + 5 —Vrs)
+. . Fa003048, 5,535,
xcos(Y, + ¥+ ¥+ ¥, +@s — V)]

Let us now collect together the contributions arising
from the following terms:

¥1234P1P203P4 COS(Vy + v, + 3 +vy)
and, fori=35,6,7,
— 3 V12:¥34i01 920304 07 COS(v) v, +V3+),
- % V12 V34101 P2P3 P4 ¥ COS(Vy +Vy +v3+1y),
— 3 V12341010203 P4 0;¥; COS(Vy V5 +v3+ V4 +v;— 1)),
— 2 V121V34iP1P203 P4 £;¥; COS(Vy v, + V3 + v+ 14— vy).

From (12)-(16), we find that the total contribution of
the above terms is

4 -1 7
Py [ H1(1 - a?)] {21234}’1234 + 221234(1 - 0‘%)_1

i=

(16)

X [Viai¥aaili + ViaiVsali + (ViaiVsai + ViaiVaaDils
7
— (NaiVaai + ViiVaa)oST1 + ;(1 —a?)!

X [}’12?}’341'2323(2) + }/IZiy34TZ$gg(l)]RiSi}’ 17)

INTEGRATING DIRECT METHODS AND ISOMORPHOUS REPLACEMENT. I

where
L;=(1— o) '[R? + oS? — 2a,R;S; cos(o; — )] — 1
L; = (1 —o?)7'[S? + ofR? — 20R;S; cos(e; — )] — 1.

6. The joint probability distribution function of seven
pairs of structure factors

In order to write the complete expression for the
distribution P,, let us consider how the Fourier transform
works when applied to (8). We have seen in the
preceding section that the term

P1P2P3P5 COS(Vy + vy + V3 + 1)
in the characteristic function C gives rise to the 16-term
function Z,,5,. By analogy, each of the 16 cyclic terms of
Y1234P10203P4 €OS(Vy + v, + V3 + vy) [see (9)] will pro-
duce a suitable Z;,4 function. For example, the term
P10203Ys €OS(Vy + v, + 5 + py) Will give rise to Z)5y,
the term p,0,¥3¥, cos(v; + v, + v; + py) will give rise
to Z,,3; etc. For reader usefulness, we show here only the
expression for Z,,.;: the reader can derive the other Z
functions in a cyclic way.
We have

Z,y33 = 16[R R,R;S, cos(¢; + &, + 3 + V)

— 0, 8,R,Ry S, cos(Yry + ¢, + ¢5 + ¥u)

— &R S,RyS,cos(¢y + ¥, + @5 + V)

— 3R R,8,8, cos(@y + @, + Y3 + Yu)

— 4R RyR3R cOs() + ¢, + @3 + &)

+ 10,5, 5,R38, cos(Yy + ¥, + 3 + ¥y)

+ @235 R, S35, cos(Yy + ¢, + Y3 + ¥)

+ 00,8 RyR3R, cos(Yr) + ¢, + 3 + &)

+ ,03R, 5,535, cos(p + ¥, + V3 + ¥y)

+ 0, 04R S,R3R, cos(¢) + Y, + 3 + ¢4)

+ 0304R Ry S3R, cO8(@y + @y + V3 + b4)

+ 0105238, 5,835, cos(Yry + ¥, + Y3 + ¥)

+ 00,0, 8,5,R3R, cos(Yry + ¥, + ¢ + ¢4)

+ &;030,81R,S3R, cos(¥y + ¢, + Y3 + ¢y)

+ ,0304R, S,55R, cos(@, + ¥, + Y5 + @)

+ &,2,035,8,83R, cos(¥r; + ¥, + Y3 + B)]-
If we regroup all the terms in the various Z; 4 functions
into: (a) the subset relative to cos(¢, + ¢, + @5 + @4);

(b) the subset relative to cos(¥; + ¢, + ¢; + ¢,); (c)
etc., we will obtain the following 16 cumulative terms:

2B1334RRyR3R, cOs(p) + ¢, + b3 + ¢4)
+ 2Bi23481RoR3 R, cOS(Y) + ¢, + 3+ ¢4)
+ 2B,334R 1 S,R3R cos(¢y + ¥, + @3 + ¢4)
+ 2B1554R 1 R,S3R, cos(¢y + ¢, + Y3 + ¢y)
+ .. 4 2B1333515,838, cos(Yy + ¥, + Y3 + Y),
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where
4 -1
Bz = [Hl(l - 0‘?)] (V1234 — X3¥1238 — A3V1234

— V1734 — Q1 Vina T 000GV 53 T 0 QY5

+ 0104 Vigzi + Xa03Y135 + 000 Y333

+ @30 V1235 — 0000034338 — 000 Yi335

— 00300 V1935 — Q0304 Y1331 + O 0030l Vi533)

4 -1
Bz = [I__[l(l - 01;2)] (V1233 — V1234 — A3¥1233

— V1335 — Q1 Vigsd T 00 Y1535 + O Q3 Vi05
+ €0 Vigss + Xa3V1355 + 0004V 53
+ 030, Y1234 — 00003 Y1555 — 000 Vi33,

— 0030, Y55 — 0030, Y554 T 00050, Vi55,)

. _
1233 = [Hl(l —q; )] (Vizs — Vizg — %Via
i=
— Vi — X1 Vi33 T Y5 + @ QY53
+ 010, Y1334 + A03Vi35 + 00 Vi
+ 0304 Y1534 — Q1003535 — Q004 Y05
— Q103041334 — 0030,V p3s — Q100530 Y1234)-

If the contributions of the cross terms are taken into
account [as we did in (17)] and we use the approximation

(1 +x) = exp(x),
we obtain the conclusive joint probability distribution
function:
7

Py~ ; ((1/72)R:S:/(1 = ] exp{—[1/(1 — )]

X [R? + Si2 —204R;S; cos(y; — ¢i)]})

X (1 + Z;[zﬂwRiRle cos(¢; + ¢; + ¢))

"./!

+ 2B SRR, cos(¥; + ¢; + &)
+285R:S;R, cos(¢; + ¥; + @)
+2BiRiR;S, cos(¢; + ¢; + ¥))
+2B;;R;S;S, cos(p; + ¥ + ¥)
+2B;;38:R;S, cos(¥; + ¢ + ¥)
+2B:S:S;R, cos(¥; + ¥; + @)
+2B:515:S;8, cos(¥; + ¥ + Y]

Iy

7
+ B33 +Bfﬁ)] + 2R1R2R3R4{ﬁ1234 + 2(1 -

d(2 d(1
X [812341L1 + B]2341 i (B.IDZ%4E ) + Bxan?ME ))

139
x (@L; + aSHcos(¢y + ¢, + ¢ + ¢,)

+ iz;(l — o) [BI7 cos(@y + b, + ¢ + 6,

+ i — ) + Bl cos(¢y + ¢, + 65 + 6,

—¢ + \/fi)]RiSi} + 2R1R2R354{ﬂ1233

7
+ Z;(l - “?)_1[31237“[/:' + B il

— B + By el + e

1234 1234i

-1
—af)

7
X cos(¢p, + ¢, + @3 + V) + g(l
x [Bipa® cos(@; + ¢, + ¢ + Vo + Y + 6)

B?‘z(;i(l) cos(¢p, + o, + s+ ¥, — o + g[/)],R,-S,-}

7
+...+ 281525354{ Bizia + (1 —a?)™!

i=5

d(2) mod(])
x [Bizsgli + Biszaili — B'fni%af +B535; )

x (a.L; + a;SHIcos(W, + ¥, + Y3 + ¥)

7
+ g(l — o) ' [BED cos(¥y + ¥, + ¥
+ ¥+ ¥ — ) + BEEY cos(¥, + ¥, + ¥

+v,— i+ '/fi)]RiSi}) . (18)

In (18), only the terms useful for deriving the conditional
distribution
P, +0, + ¢ +d4|R, S, i=1,...,7)

are emphasized. We note:

(a) the triple summation over i, j, | refers to the
combinations (1,2,5), (3,4,5), (1,3,6), (2,4,6),
(1,4,7), (2,3,7) only;

(b) the B; are defined as

B = [(1- 0'2)(1 - 012)(1 - a,)] ( —0;00 Y T
+ ooy + ey + oy
— Yy — Vi — Yyt Vi)

By =1 —a))(1 — &)1 — )] (—eioe ;57
+ oy + oy + ey

— ¥ — Y — Vit Vi)

.}1 =[(1- 0[12)(1 - a,?)(l - a?)]_l(_aiajalyijl
+ oy t+ oy ey

=Y — Y — Yo+ Vi
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(c) the Bij, are defined as
By = vil(1 —eh)(1 —a)(1 — o Ly
Bjj = Vl(1 — )1 - af)(l — D) 'LLL;
=yl — )1 - 0!2)(1 — o) LiliLs;

(d) the various B,ﬂp in the distribution (18) and their
modified forms are defined as

By = [ H(l

] (V12iV34i — V12iY33i%

= ViV — - - - + Vi3V 320, 00030)
By = [ilj](l - a?)_l] (N2:¥33i — V12iY24i%
= ViiV3i% — -« + Vi3i¥ 540 00030,)
4
Bisz = [H}(l —af) ] (Viai¥3i — ViaV3a%
= Yi5i¥3ai0s — - -+ Vi2iV34i0t Qp0300)

(V12i¥347 — V123V33i%

4
~1
By = {1:[1(1 - “?)
— o VIRV 00 003 0)

4 1
12341 [ H(l 2)—

=1

(V127¥337 — Y12iY34i%

— o Vi3V 34100 0 030,)

. -
-1
Bizgi = 1_11(1 — o) | (Yiaivai — YiziVai%
= oo V123470 0 0504)
- -
0d(2 -1
311]]2345‘ )= H(l — o) | (ViaiVaai — VisiVsiia

—...+ Vii?)’i&:“l“z%%)

0d(2 _
3?1233(,- ) H(l '2) (N2iV33i — Yi2iV34i%
— oo Vi3V 3000 X0 0)
e
B3 = [H(l }(Vii?}’ifu Yi3i¥ i

— oo V12iV30i0 @ 030)
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d
BIInZ%zlEl) [ H(l ] (N2:V348 — V12i¥33i%
VT3V 3310000 030)
od
Bllnz34(11) [ [1a - ] (V121¥337 — V12i¥34i%
— ot Vi 3400 00050,)
mod(1) __

1234i

= [f10-a

— o VioiVai0 0050).

] (Viziyaa: — YiaiY34i%

7. Conclusions

The distribution (18) is the main goal of this paper. It is
the joint probability distribution of seven pairs of
structure factors, whose indices are chosen so as to
allow the estimate of the quartet phase invariants when
the diffraction data from two isomorphous structures are
available. Expression (18) is very complicated and does
not immediately reveal its basic features. In particular, it
is cumbersome for the protein case, to which this paper is
particularly addressed, where the derivatives are obtained
by addition of heavy atoms. In such a situation, it may be
expected that (18) may be substantially simplified [see
GCZ for simplification of the distribution (4)]. In the
following paper (Giacovazzo & Siligi, 1996), we will
derive such a simpler distribution function and will apply
it to real protein data. It is anticipated here that the results
will be satisfactory and that the theoretical implications
of the quartet theory contribute to a sounder interpreta-
tion of the Hauptman and GCZ formulas for triplet
invariants.

APPENDIX A

The basic formulas used for the derivation of the joint
probability distribution function (18) are here collected.
(@)

?COS(I’ — syexp{—itlacos(q — t) — becos(r — 1)]}dz
0
= (—27i)[J,(1Q)/Qllacos(q — 5) — beos(r — s)],
(19)
where
Q% =a* +b*—2abcos(q—r)

and J, is the Bessel function of the first kind of order 1.

b)
:fﬂJ,(Qr) exp(—p?i2/2) dr = (Q/p*) exp(—Q2/2p?).
(20)
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()
Ofo texp(—1p*?)dr 2f”exp{—it[a cos(g — 1)
0 0
— bcos(r — 1)]}dt
= (27/p*) exp(—Q*/2p?). (21
@

[o<]

2r
J 1 exp(—1p*?)dt [ cos(s — t) exp{—iflacos(q — T)
0 0

— bcos(r — 1))} dr
= (=2mi/p"acos(q — s) — beos(r — 5)]

x exp(—Q*/2p). (22)
(e
°f°t3 exp(—ip??)de 2f”exp{—it[a cos(g — 1)
0 0
—bcos(r — 1))} dr
= (4n/p*)exp(-Q*/2p")(1 — Q*/2p%).  (23)

APPENDIX B

The integral of the first-order term in (5) may be written
as

3 oo [e ]
(2”)_]226 [ l_]l(RiSi)J ‘(! o1 €xp(—pi/2) ‘0[ 02 €xp(—p3/2)

00 2 27

x [ pyexp(—p3/2)dp, dp,dp, [ - [ exp{—i2'”
0 0 0

x [p|R; cos(¢, — v)) + p,R, cos(¢, — v,)

3 oo
+ p3R3 cos(¢; — v3)]} dv, dv, dv, 1:11 of v, exp(—¥7/2)

2
x [ exp{~iy[2"/%S; cos(¥, — w;)
0
— iayp; cos(v; — w,)]} dy; du,. (24)
The last limit may be evaluated by means of (21) and
gives
3
(2n)* exp{— SIS? — a?p?/2 — i2Y2a,0,S; cos(yr; — vi)]}.

i=1
(25)
Then, (24) reduces to

@) 2TIIR S, exp(—SiZ)lﬁ{Tp,- expl—1(1-a?)?] dp,
i=1 i=1 \0
X zfeXP{—ipi[zl/zRi cos(¢; — v;)
0

— 2248, cos(¢; — v)]} dv,-},
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which, because of (21), reduces to

(27)2 [TIR:S, exp(~S?)] IT (127/1 o)

i=1
x exp{—[1/(1—a})|[R} +07S?
—2a;R;S; cos(Y; —¢i)]})

=7 l:[llR;Si/(l — ap)]exp{—[1/(1 - e})]

X [R? + 87 — 20,R;S; cos(y; — $))]}-

APPENDIX C

The integral of the term in (5) containing y,,; may be
written as

3 )
(2m)1228 III(RfSi){ 212y, T o exp(—pi/2)
i= 0

x [ p3exp(=p3/2) [ 0} exp(—p3/2)dp, dp,dp;
0 0

2r 2

x [ ... [cos(v, + v, + v;) exp{—i2!/?
o 0

X [p;R, cos(¢; — v;) + p,R, cos(¢p, — v,)
+ p3R;3 c0s(¢3 — v;)]} dv; dv, dvy

3 oo 2
% T1 [ viexp(—172) [ exp —in[2'8, cos(y; — )
i=10 0
— iyp,c05(v, — )] dy, du,-}- 26)

The last line has been evaluated in Appendix B [see
(25)]. Accordingly, (26) reduces to

3
(2”)_926 H[RiSi exp(—-S,.Z)]{ - 1-2—1/2},123
i=1
x | Aexpl—3(1 - )il dp,
0
x [ piexpl—3(1 — &3)p3ldp,
0

X ?CXP —ip,[2'7?R, cos(¢, — v,)
— 22,8, cos(¥, — v,)] dv,
X ?exp —ip3[2'/Ry cos(¢5 — v3)
0
— 2"238; cos(¥; — v;)] dv,
x [ Aexpl-41 - aDeildn, foost, 43,43,
x exp{—ip,[2'/*R, cos(¢; — v,)

— 22,8, cos(y, — v))]} dv, }
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The last integral can be evaluated with (22) and is
— [27i/(1 — &})*[2/°R, cos($; + v, + v3)
— 220, cos(¥; + v, + )] exp{—[1/(1 — &})]
x [R} + oS — 20 R, S cos(¢, — Y]}
Integration with respect to the pairs (o,, v,) and (p3, v3)

may be accomplished via the same technique.
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